Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-05 12:13:48 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f045cd018e0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-05 12:13:48 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-05 12:13:48 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-05 12:13:48 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
31 wFS8ZtyiydZ70000 None True Visualize intestine IgY intestinal Heat-sensit... None None notebook None None None None None 2024-11-05 12:14:01.616150+00:00 1
34 3ApgDsYFP2EV0000 None True Intestine research IgY cluster IgA investigate... None None notebook None None None None None 2024-11-05 12:14:01.616442+00:00 1
35 Ff6sj6zZUxCU0000 None True Apocrine Sweat Gland intestine IgE Ascending c... None None notebook None None None None None 2024-11-05 12:14:01.616539+00:00 1
53 lLFv5qiXVYOb0000 None True Igy intestine Merkel cells Striated duct IgA c... None None notebook None None None None None 2024-11-05 12:14:01.618274+00:00 1
63 4x9789VrqMtO0000 None True Ige IgE intestine Heat-sensitive sensory neuro... None None notebook None None None None None 2024-11-05 12:14:01.619257+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 Zsa9FbHBtP2Z0000 None True Igg Spindle neurons research Spindle neurons c... None None notebook None None None None None 2024-11-05 12:14:01.613295+00:00 1
25 izwMFNL0WdX80000 None True Keratinocyte IgG rank research Pancreas IgG4. None None notebook None None None None None 2024-11-05 12:14:01.615570+00:00 1
34 3ApgDsYFP2EV0000 None True Intestine research IgY cluster IgA investigate... None None notebook None None None None None 2024-11-05 12:14:01.616442+00:00 1
45 KbEqeTRdoeR60000 None True Research study IgE IgG. None None notebook None None None None None 2024-11-05 12:14:01.617495+00:00 1
60 9HB9lFAcANXe0000 None True Igy Pancreas research research IgA Striated du... None None notebook None None None None None 2024-11-05 12:14:01.618970+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 Zsa9FbHBtP2Z0000 None True Igg Spindle neurons research Spindle neurons c... None None notebook None None None None None 2024-11-05 12:14:01.613295+00:00 1
25 izwMFNL0WdX80000 None True Keratinocyte IgG rank research Pancreas IgG4. None None notebook None None None None None 2024-11-05 12:14:01.615570+00:00 1
34 3ApgDsYFP2EV0000 None True Intestine research IgY cluster IgA investigate... None None notebook None None None None None 2024-11-05 12:14:01.616442+00:00 1
45 KbEqeTRdoeR60000 None True Research study IgE IgG. None None notebook None None None None None 2024-11-05 12:14:01.617495+00:00 1
60 9HB9lFAcANXe0000 None True Igy Pancreas research research IgA Striated du... None None notebook None None None None None 2024-11-05 12:14:01.618970+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
45 KbEqeTRdoeR60000 None True Research study IgE IgG. None None notebook None None None None None 2024-11-05 12:14:01.617495+00:00 1
68 BO6Gf3go0WJ70000 None True Research Submandibular glands intestine. None None notebook None None None None None 2024-11-05 12:14:01.624761+00:00 1
97 ZdWKxwBOIUn00000 None True Research Apocrine sweat gland Thyroid epitheli... None None notebook None None None None None 2024-11-05 12:14:01.627505+00:00 1
104 Cvf75NwaQ2E90000 None True Research IgY result rank. None None notebook None None None None None 2024-11-05 12:14:01.628157+00:00 1
114 pp4GaFXsp1Hr0000 None True Research IgG4 IgY IgG1. None None notebook None None None None None 2024-11-05 12:14:01.629093+00:00 1
116 t5c05EOTCk3k0000 None True Research visualize IgG1 efficiency. None None notebook None None None None None 2024-11-05 12:14:01.629280+00:00 1
302 qL7tYsLuhM4J0000 None True Research visualize IgG3 IgE Striated duct Join... None None notebook None None None None None 2024-11-05 12:14:01.657578+00:00 1
339 OuJ239Pg0L9S0000 None True Research IgG1 Pancreas. None None notebook None None None None None 2024-11-05 12:14:01.664746+00:00 1
406 cAmVpa794KH60000 None True Research IgG investigate intestinal IgY Heat-s... None None notebook None None None None None 2024-11-05 12:14:01.674924+00:00 1
479 bTDPXAgZIqrz0000 None True Research Heat-sensitive sensory neurons IgY cl... None None notebook None None None None None 2024-11-05 12:14:01.685544+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 557hQaaqjTDq0cqR0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-05 12:13:52.268078+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 9oovxdkO0ZJwIOMP0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-05 12:13:52.358144+00:00 1
3 TfFS2YTO5ypZ0AmK0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-05 12:13:52.368363+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries